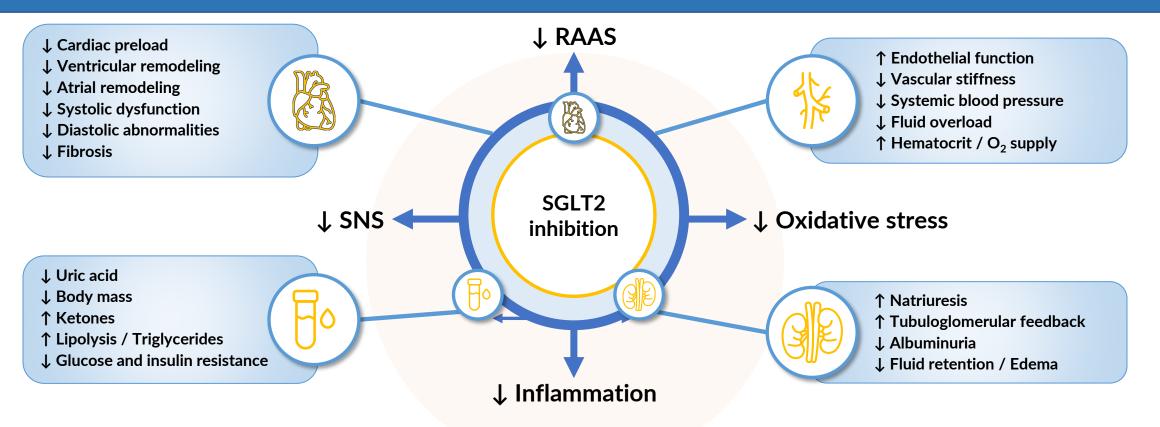
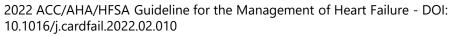


Sodium-Glucose Cotransporter-2 Inhibitors in Heart Failure: Racial Differences and a Potential for Reducing Disparities


Alanna A. Morris MD, MSc Associate Professor of Medicine Director of Heart Failure Research Associate Fellowship Director, Clinical Investigator Track Advanced Heart Failure and Transplant/LVAD Emory Clinical Cardiovascular Research Institute

- Research grants NHLBI, AHRQ, AHA, Woodruff Foundation, Association of Black Cardiologists
- Consultant Acorai, Bayer, BI Lilly, Cytokinetics, Edwards Lifesciences, Ionis, Merck
- Ownership Interest Gilead Sciences

Direct and Indirect Actions of SGLT2 Inhibitors


ATP, adenosine triphosphate; CRM, cardiovascular, renal and metabolic; eGFR, estimated glomerular filtration rate; RAAS, renin-angiotensin-aldosterone system; SNS, sympathetic nervous system.

Givens RC, Schulze PC. In: Eisen H, ed. Heart Failure: A Comprehensive Guide to Pathophysiology and Clinical Care. London: Springer Verlag; 2017:1–26; Ronco C et al., *J Am Coll Cardiol*. 2008;52:1527; Santos-Ferreira D, et al. *Cardiology*. 2020; 145:311–20; Cowie M, Fisher M. *Nat Rev Cardiol*. 2020;17:761–72; Scheen AJ. *Nat Rev Endocrinol*. 2020;16:556–77.

Guideline Directed Medical Therapy for HFrEF includes 4 medication classes

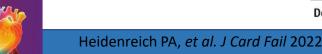
COR	LOE	Recommendations
1	A	In patients with HFrEF and NYHA class II to III symptoms, the use of ARNi is recommended to reduce morbidity and mortality
1	A	In patients with previous or current symptoms of chronic HFrEF, the use of ACEi is beneficial to reduce morbidity and mortality when the use of ARNi is not feasible
1	B - R	In patients with chronic symptomatic HFrEF NYHA class II or III who tolerate an ACEi or ARB, replacement by an ARNi is recommended to further reduce morbidity and mortality
1	A	In patients with HFrEF, with current or previous symptoms, use of 1 of the 3 beta blockers proven to reduce mortality is recommended to reduce mortality and hospitalizations
1	A	In patients with HFrEF and NYHA class II to IV symptoms, an MRA is recommended to reduce morbidity and mortality, if eGFR >30 mL/min/ 1.73 m2 and serum potassium is <5.0 mEq/L
1	Α	In patients with symptomatic chronic HFrEF, SGLT2i are recommended to reduce hospitalization for HF and cardiovascular mortality, irrespective of the presence of type 2 diabetes

Depa JH

SCHOOL OF

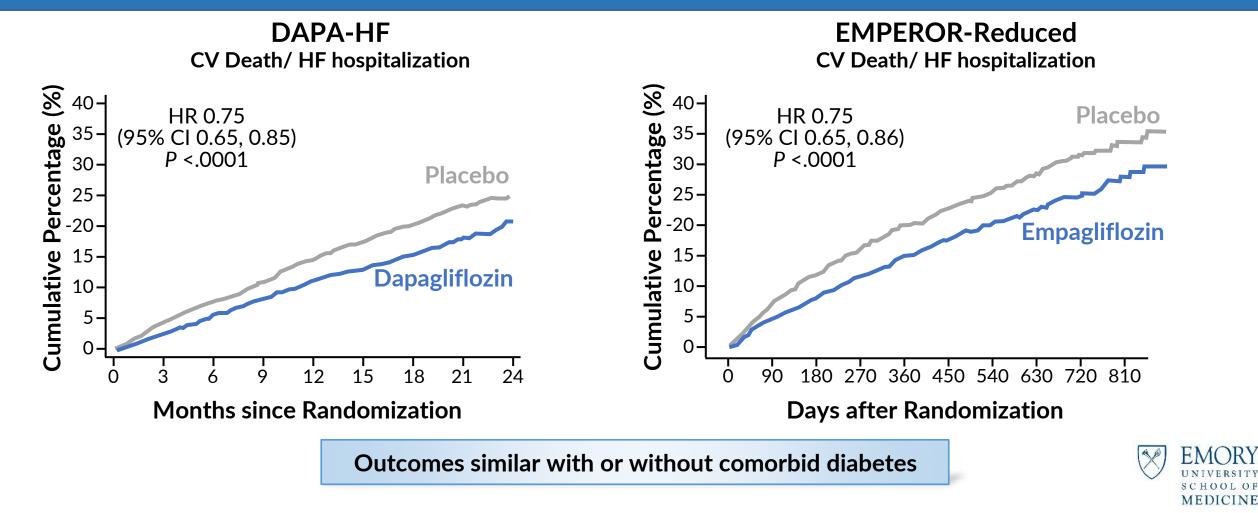
MEDICINE

SGLT2i are now Guideline Directed Medical Therapy for HFmrEF and HFpEF


COR	LOE	Recommendations			
2 a	B - R	In patients with <i>HFmrEF</i> , SGLT2i can be beneficial in decreasing HF hospitalizations and cardiovascular mortality			

COR	LOE	Recommendations
2 a		In patients with <i>HFpEF</i> , SGLT2i can be beneficial in decreasing HF hospitalizations and cardiovascular mortality

2022 ACC/AHA/HFSA Guideline for the Management of Heart Failure - DOI: 10.1016/j.cardfail.2022.02.010



SCHOOL OF

MEDICINE

SGLT2 Inhibitors in Patients with Chronic HFrEF

SGLT2 Inhibitors in Patients with Chronic HFrEF

Table 1. Characteristics of the Patients at Baseline.*						
Characteristic	Dapagliflozin (N = 2373)	Placebo (N = 2371)				
Age — yr	66.2±11.0	66.5±10.8				
Female sex — no. (%)	564 (23.8)	545 (23.0)				
Body-mass index†	28.2±6.0	28.1±5.9				
Race — no. (%)‡						
White	1662 (70.0)	1671 (70.5)				
Black	122 (5.1)	104 (4.4)				
Asian	552 (23.3)	564 (23.8)				
Other	37 (1.6)	32 (1.3)				
Region — no. (%)						
North America	335 (14.1)	342 (14.4)				
South America	401 (16.9)	416 (17.5)				
Europe	1094 (46.1)	1060 (44.7)				
Asia–Pacific	543 (22.9)	553 (23.3)				

Characteristic	Empagliflozin (N = 1863)	Placebo (N = 1867)
Age — yr	67.2±10.8	66.5±11.2
Female sex — no. (%)	437 (23.5)	456 (24.4)
Race — no. (%)†		
White	1325 (71.1)	1304 (69.8)
Black	123 (6.6)	134 (7.2)
Asian	337 (18.1)	335 (17.9)
Other or missing	78 (4.2)	94 (5.0)
Region — no. (%)		
North America	212 (11.4)	213 (11.4)
Latin America	641 (34.4)	645 (34.5)
Europe	676 (36.3)	677 (36.3)
Asia	248 (13.3)	245 (13.1)
Other	86 (4.6)	87 (4.7)
		EMO UNIVERS SCHOOL MEDICI

Efficacy of Angiotensin-Converting Enzyme Inhibitors and Beta-Blockers in the Management of Left Ventricular Systolic Dysfunction According to Race, Gender, and Diabetic Status A Meta-Analysis of Major Clinical Trials

Study Name	Total N	White N	Non-White N	Black N	Non-Black N	RR White (95% CI)	RR Black (95% CI)	RRR (95% CI)
SAVE	2,231	1,993	238			0.84 (0.71-0.99)	0.78 (0.50-1.21)	1.08 (0.67-1.73)
SOLVD-Prevention	4,228	3,657	571	404	3,824	0.95 (0.81-1.12)	0.87 (0.60-1.25)	0.91 (0.61-1.36)
SOLVD-Treatment	2,569	2,061	508	396	2,173	0.89 (0.79-1.00)	0.93 (0.74-1.17)	1.04 (0.81-1.35)
Random effects pooled estimate		7,711	1,317	800	5,997	0.89 (0.82-0.97)	0.89 (0.74-1.06)	1.01 (0.83–1.24)

Table 8. Effect of Beta-Blockers on Mortality From Heart Failure in Black and White Patients

		RR Analysis						
Study Name	Total N	White N	Non-White N	Black N	Non-Black N	RR White (95% CI)	RR Black (95% CI)	RRR (95% CI)
COPERNICUS	2,287	2,069	218	121	2,166	0.66 (0.53-0.82)	0.62 (0.19-2.01)	0.94 (0.28-3.11)
MERIT-HF	3,991	3,755	236	207	3,784	0.67 (0.54-0.82)	0.79 (0.36-1.76)	1.19 (0.52-2.70)
U.S. Carvedilol HF	1,094			217	877	0.38 (0.20-0.70)	0.53 (0.19-1.48)	1.41 (0.43-4.68)
BEST	2,708			627	2,081	0.85 (0.74-0.96)	1.17 (0.94-1.47)	1.39 (1.07-1.79)
Random effects pooled estimate (with BEST)		5,824	454	1,172	8,908	0.69 (0.55-0.85)	0.97 (0.68–1.37)	1.35 (1.07–1.71)
Random effects pooled estimate (without BEST)		5,824	454	545	6,827	0.63 (0.52–0.77)	0.67 (0.38–1.16)	1.17 (0.65–2.11)

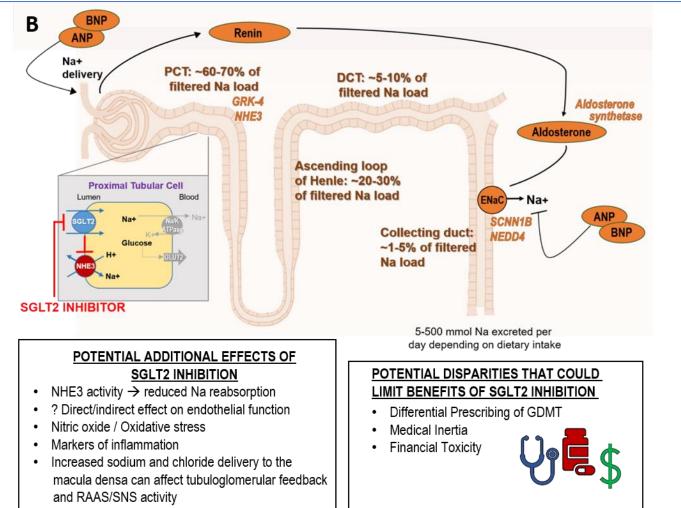
Shekelle PG et al. JACC 2003

SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials

Race

	Number with event/r	number of patients (%)			HR (95% CI)
	SGLT2 inhibitor	Placebo			
White					
EMPEROR-Reduced	264/1325 (19·9)	289/1304 (22·2)			0.88 (0.75–1.04)
DAPA-HF	275/1662 (16.5)	348/1671 (20.8)		_	0.78 (0.66–0.91)
Subtotal					0.83 (0.74-0.93)
Test for overall treatment effect p=0·0012 Test for heterogeneity of effect p=0·30					
Black					
EMPEROR-Reduced	24/123 (19·5)	48/134 (35·8)			0.46 (0.28–0.75)
DAPA-HF	26/122 (21·3)	32/104 (30-8)			0.62 (0.37–1.04)
Subtotal					0.53 (0.37-0.76)
Test for overall treatment effect p=0·0005 Test for heterogeneity of effect p=0·41					
Asian					
EMPEROR-Reduced	62/337 (18.4)	99/335 (29·6)			0.57 (0.41–0.78)
DAPA-HF	78/552 (14·1)	118/564 (20·9)		-	0.64 (0.48–0.86)
Subtotal					0-61 (0-49-0-75)
Test for overall treatment effect p<0.0001 Test for heterogeneity of effect p=0.60 Test for treatment by subgroup interaction p	=0·0063		÷		
	-		0.25 0.50 0.75	1.00 1.25	

Department of Medicine


Zannad F et al. Lancet 2020;396:919-29

PERSPECTIVE

Sodium-Glucose Cotransporter-2 Inhibitors in Heart Failure

Racial Differences and a Potential for Reducing Disparities

Alanna A. Morris[®], MD, MSc; Jeffrey M. Testani[®], MD, MTR; Javed Butler[®], MD, MPH, MBA

Department of Medicine

Morris AA, Testani J, Butler J. Circulation 2021;143(24):2329-2331

Relative Deficiency of Natriuretic Peptides in Black Individuals at Risk for HE

N=3,148 subjects from Dallas Heart Study (51% Black, 31% White, 18% Hispanic)

N=5,597 subjects from MESA (24% black, 40% white, 23% Hispanic, 13% Chinese)

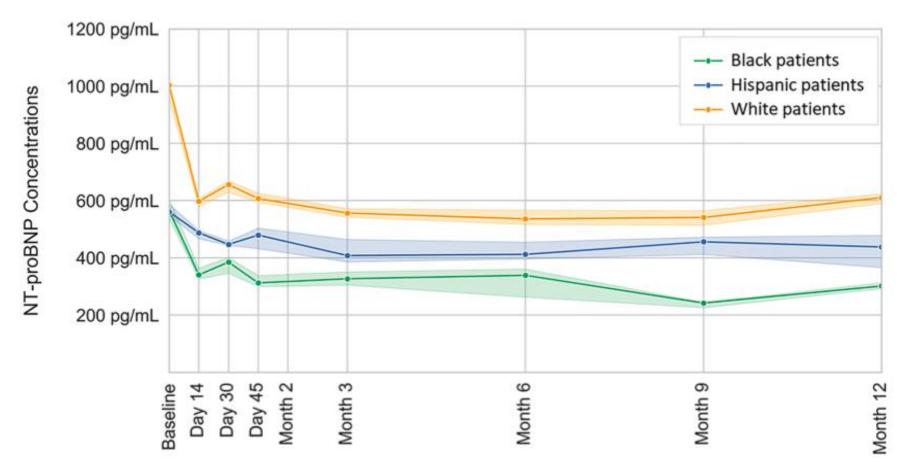
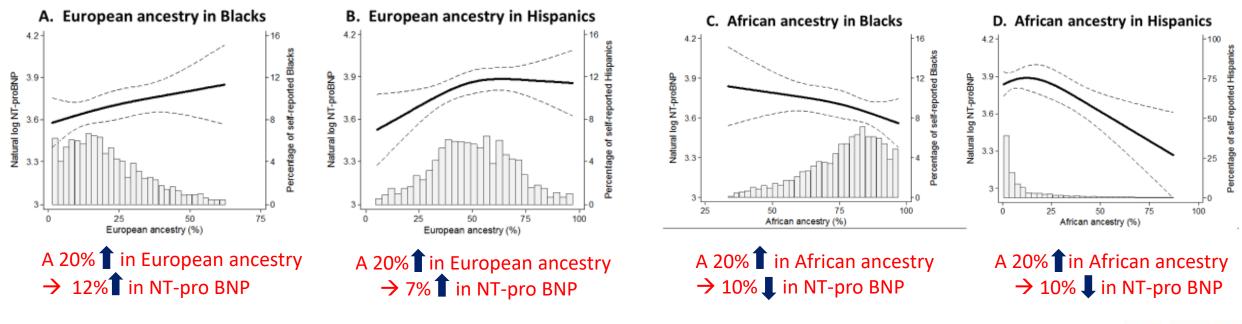
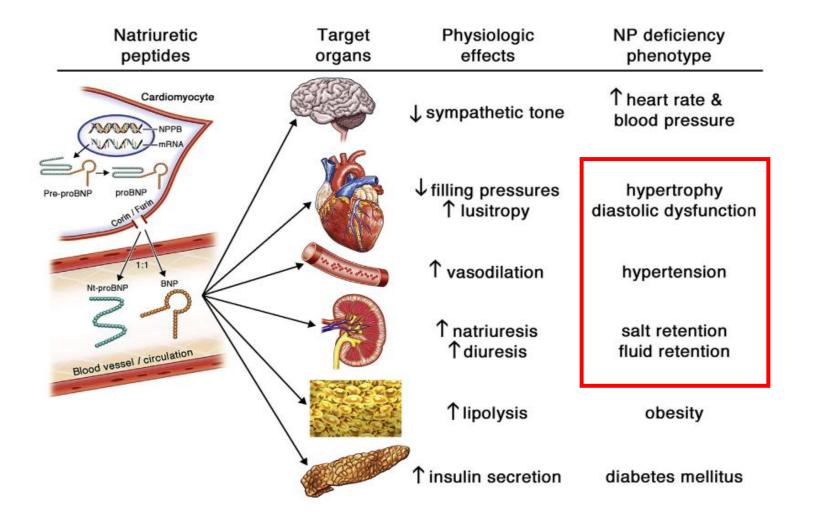

White (reference) 68 pg/mL [34-136] Chinese -41% (95% CI: -46.-35) 43 pg/mL [17-90] Black -46% (95% CI: -50.-41) 43 pg/mL [17-94] Hispanic -27% (95% CI: -33.-20) 53 pg/mL [23-107] -40 -30 -20 -10 10 20 -60 -50 0 % Lower % Higher P=0.0001 for race/ethnic difference in NT-proBNP LOF MEDICINE Department of Medicine

TABLE 2 Association Between Race/Ethnicity and Plasma NT-proBNP Levels in Multivariable Linear

Model	White	Black	p Value
Age, sex	Reference	-0.283 (-0.373 to -0.192)	< 0.0001
Age, sex, HR, anti-HTN medication, SBP, DM, BMI, eGFR, microalbumin	Reference	-0.390 (-0.483 to -0.296)	< 0.0001
Age, sex, HR, anti-HTN medication, SBP, DM, BMI, eGFR, microalbumin, education, income	Reference	-0.464 (-0.570 to -0.359)	< 0.0001
Age, sex, HR, anti-HTN medication, SBP, DM, BMI, eGFR, microalbumin, education, income, LV mass index, LVEF	Reference	-0.492 (-0.608 to -0.376)	< 0.0001
Age, sex, HR, anti-HTN medication, SBP, HOMA-IR, BMI, eGFR, microalbumin, education, income, LV mass index, LVEF	Reference	-0.502 (-0.624 to -0.380)	<0.0001

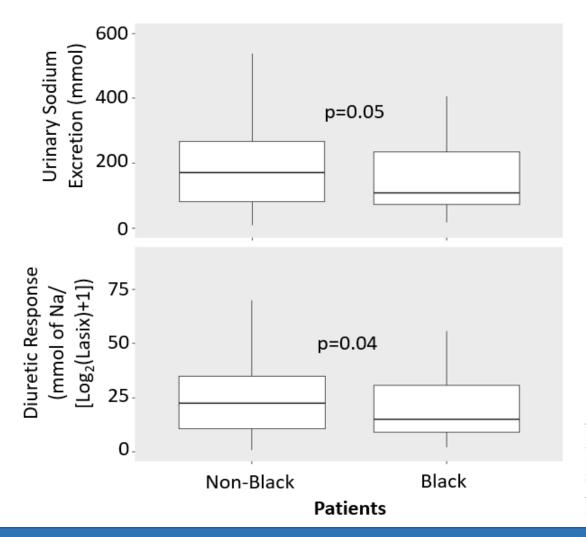

Relative deficiency of natriuretic peptides in Black patients with HF

N=782 subjects in PROVE-HF (mean age 68±13 years, 22% Black)


EMORY UNIVERSITY SCHOOL OF MEDICINE

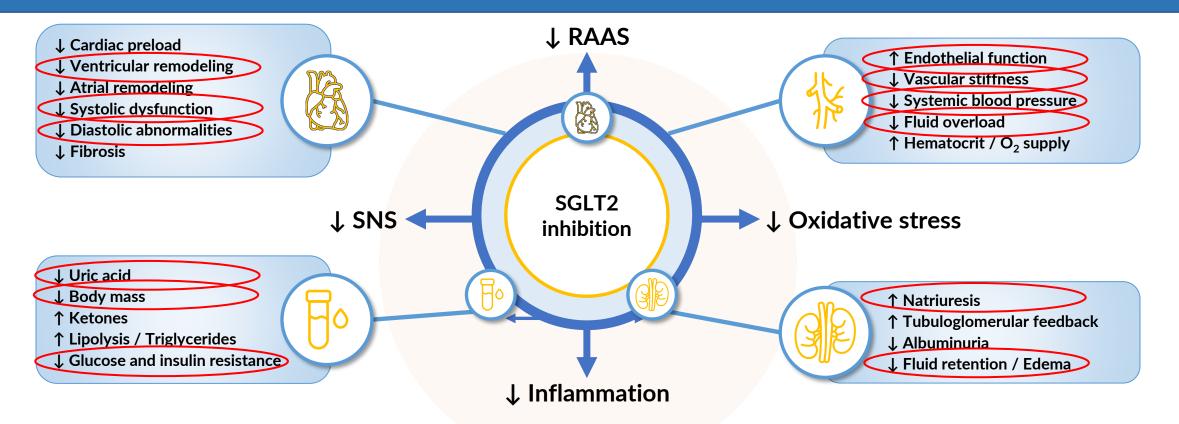
Relative Deficiency of Natriuretic Peptides in Black Individuals at Risk for HF

Physiologic Consequences of Relative Natriuretic Peptide Deficiency



Physiologic Consequences of Relative Natriuretic Peptide Deficiency

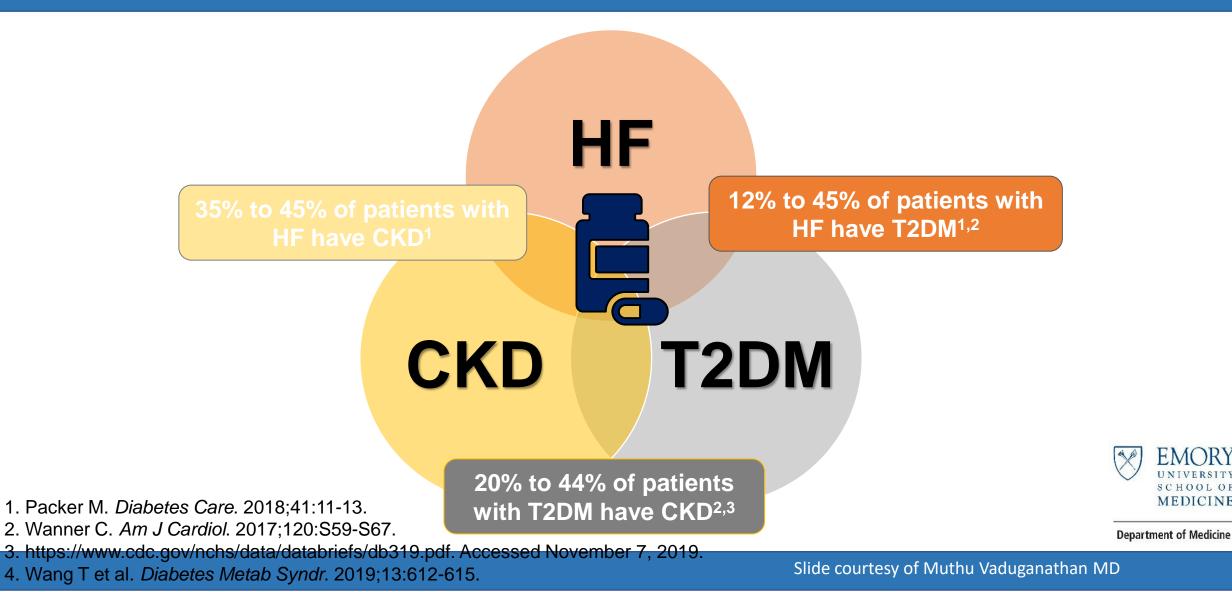
Post-Hoc Analysis of ROSE-AHF with EF ≤50%


	Black (n=50)	Non-Black (n=178)	P-value
Age (years)	63.1 ± 12.3	70.6 ± 11.2	< 0.001
Male	32 (64%)	149 (83.7%)	0.004
BMI (kg/m ²)	33.3 ± 8.9	31.7 ± 7.6	0.2
Diabetes	27 (54%)	100 (56.2%)	0.9
Heart Rate (BPM)	82 ± 14.7	74 ± 12.4	< 0.001
Systolic BP (mmHg)	119 ± 18	115 ± 17.7	0.1
LVEF (%)	24.7 ±11.1	29.6 ± 11.4	0.01
Ischemic Cardiomyopathy	16 (32%)	125 (70.2%)	<0.001
ACE-I/ARB	32 (64%)	89 (50%)	0.1
Beta Blocker	42 (84%)	155 (87.1%)	0.7
Aldosterone Antagonist	16 (32%)	54 (30.3%)	0.9
eGFR (mL/min/1.73 m ²)*	40.8 ± 11.1	41.4 ± 14.5	0.7
NT-proBNP	5960 [3670 – 9720]	6550 [3200 – 11400]	0.7

Data are mean ± SD, median [interquartile range], or N (%).

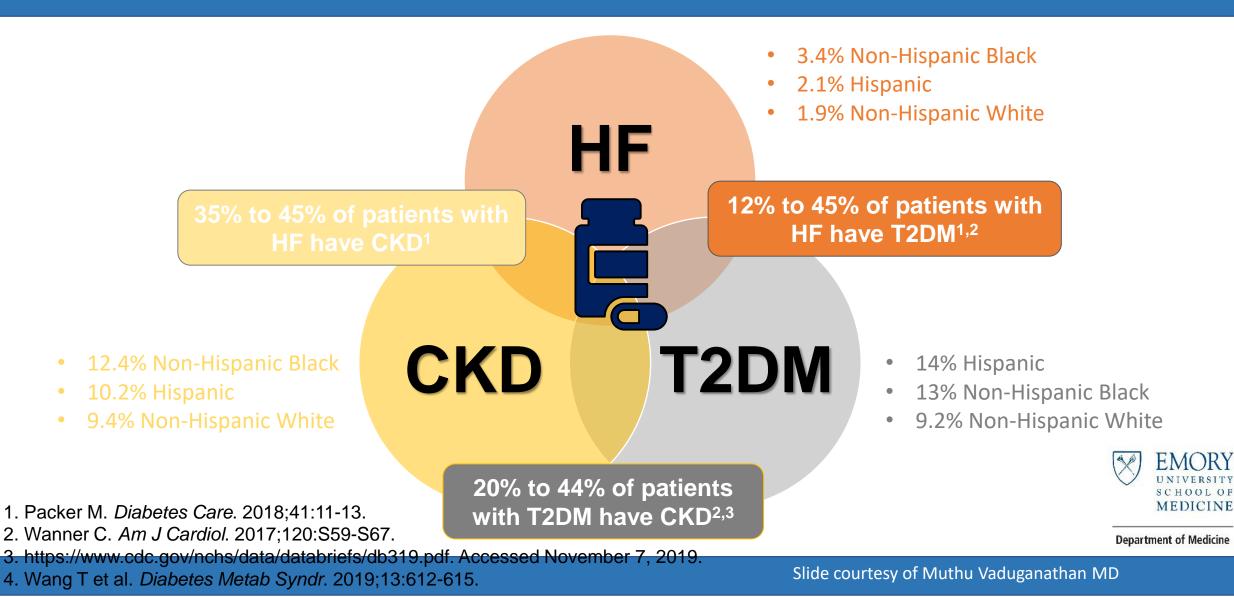
Wang J, Morris AA et al. J Am Coll Cardiol 2022; 79(9):S290

Direct and Indirect Actions of SGLT2 Inhibitors

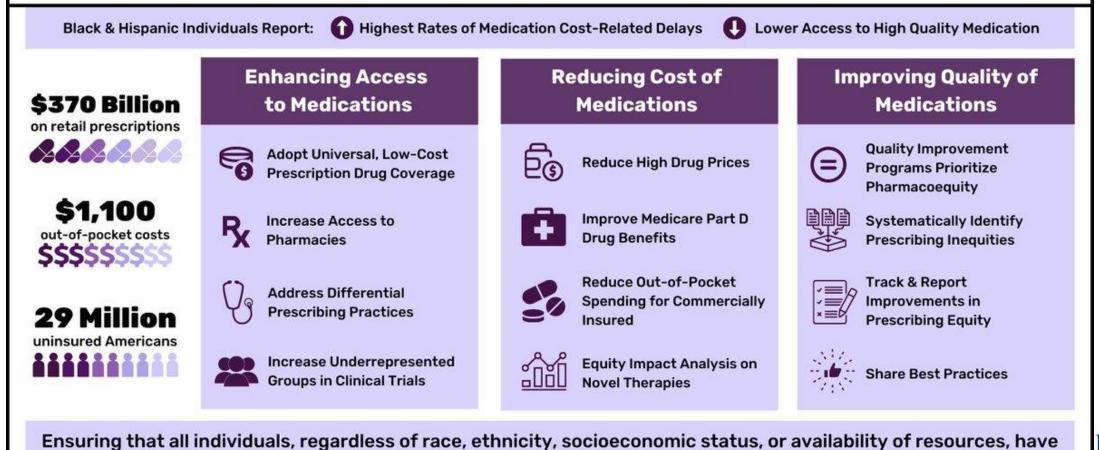


ATP, adenosine triphosphate; CRM, cardiovascular, renal and metabolic; eGFR, estimated glomerular filtration rate; RAAS, renin-angiotensin-aldosterone system; SNS, sympathetic nervous system.

Givens RC, Schulze PC. In: Eisen H, ed. Heart Failure: A Comprehensive Guide to Pathophysiology and Clinical Care. London: Springer Verlag; 2017:1–26; Ronco C et al., *J Am Coll Cardiol*. 2008;52:1527; Santos-Ferreira D, et al. *Cardiology*. 2020; 145:311–20; Cowie M, Fisher M. *Nat Rev Cardiol*. 2020;17:761–72; Scheen AJ. *Nat Rev Endocrinol*. 2020;16:556–77.



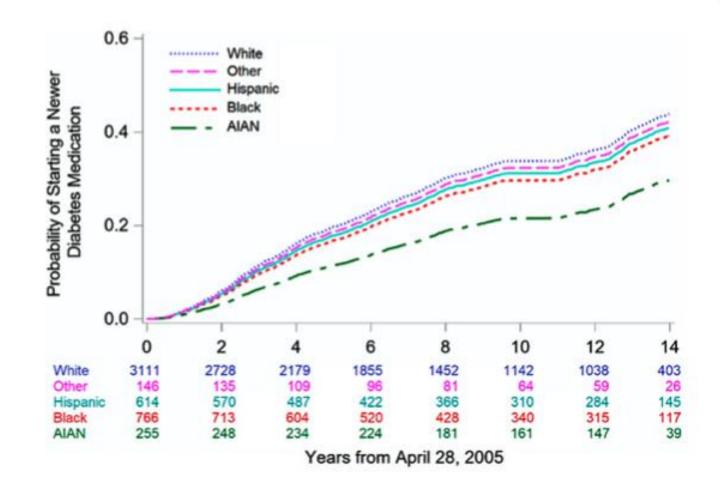
SGLT2i = Foundational Cardio-Renal-Metabolic Therapy



MEDICINE

SGLT2i = Foundational Cardio-Renal-Metabolic Therapy

Pharmacoequity: A Policy Prescription for Reducing Health Disparities



access to the highest quality medications required to manage their health is "pharmacoequity".

EMORY UNIVERSITY SCHOOL OF MEDICINE

Department of Medicine

Essien U, Dusetzina S, Gellad WF. JAMA 2021

 \sim

Use of newer diabetes medication classes during the study period, overall and by race/ethnicity.

Medication class	Overall (N = 4892)	White (<i>N</i> = 3111)	Black (N = 766)	Hispanic (<i>N</i> = 614)	$\mathrm{AI/AN}^{\#} \left(N = 255 \right)$				
First newer diabetes medication class used									
GLP-1 receptor agonist (%)	976 (20.0)	724 (23.3)	120 (15.7)	97 (15.8)	13 (5.1)				
DPP-4 inhibitor (%)	1154 (23.6)	712 (22.9)	206 (26.9)	157 (25.6)	42 (16.5)				
SGLT-2 inhibitor (%)	81 (1.7)	56 (1.8)	12 (1.6)	12 (2.0)	0 (0.0)				
Any use of diabetes medication	on class during the stud	ly period							
GLP-1 receptor agonist (%)	1215 (24.8)	886 (28.5)	152 (19.8)	131 (21.3)	15 (5.9)				
DPP-4 inhibitor (%)	1384 (28.3)	878 (28.2)	239 (31.2)	181 (29.5)	44 (17.3)				
SGLT-2 inhibitor (%)	309 (6.3)	219 (7.0)	36 (4.7)	40 (6.5)	3 (1.2)				

Figure 3. Rates of Treatment With Sodium-Glucose Cotransporter 2 Inhibitor by Race/Ethnicity in the Cohort Over Time

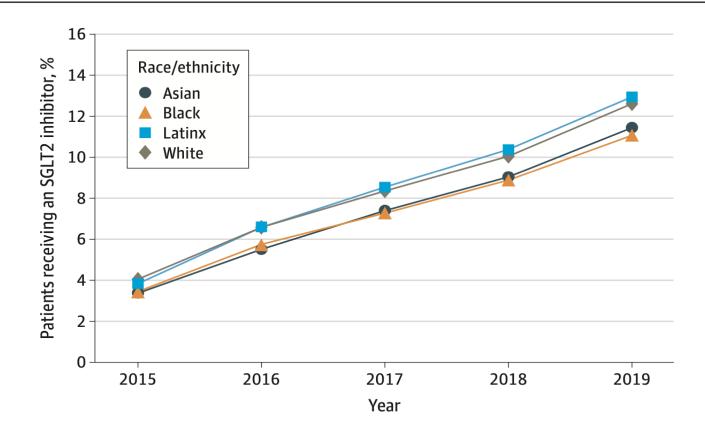


Table 2. Factors Associated With SGLT2 Inhibitor Use Among All Patients in the Multivariable Analysis

Characteristic	Adjusted OR (95% CI)	P value
Age	0.98 (0.97-0.98)	<.001
Female	0.84 (0.82-0.85)	<.001
Race/ethnicity		
White	1 [Reference]	NA
Asian	0.94 (0.90-0.98)	.002
Black	0.83 (0.81-0.85)	<.001
Latinx	1.03 (1.01-1.06)	.009
Region of residence		
West	1 [Reference]	NA
Midwest	1.06 (1.03-1.09)	<.001
Northeast	0.93 (0.90-0.97)	<.001
South	1.33 (1.29-1.36)	<.001
Zip code-linked household median income, \$		
<500 000	1 [Reference]	NA
≥100 000	1.08 (1.05-1.10)	<.001
50 000-99 999	1.05 (1.03-1.07)	<.001
Commercial insurance	2.17 (2.12-2.22)	<.001
Medicare Advantage	1 [Reference]	NA

Comorbidities		
Dyslipidemia	1.61 (1.56-1.65)	<.001
Myocardial infarction	1.00 (0.97-1.04)	.84
Cerebrovascular disease	0.98 (0.95-1.00)	.09
Chronic kidney disease	1.03 (0.99-1.07)	.14
Obesity	1.33 (1.30-1.36)	<.001
Hypertension	1.49 (1.45-1.53)	<.001
Peripheral vascular disease	1.04 (1.01-1.07)	.03
HFrEF	0.85 (0.79-0.91)	<.001
HFpEF	0.83 (0.77-0.89)	<.001
No. of Elixhauser comorbidities	0.90 (0.89-0.90)	<.001
Visits to an endocrinology specialist, No. per 12 mo		
0	1 [Reference]	NA
1	2.06 (1.99-2.12)	<.001
>1	2.84 (2.76-2.92)	<.001
Visits to a cardiology visits, No. per 12 mo		
0	1 [Reference]	NA
1	1.19 (1.16-1.22)	<.001
>1	1.15 (1.12-1.18)	<.001
Metformin use	1.55 (1.52-1.58)	<.001
Insulin use	1.57 (1.53-1.60)	<.001

Conclusions

- Black patients have a high prevalence of HF, diabetes, and chronic kidney disease, and a high risk of adverse outcomes. Thus, the potential therapeutic benefit of SGLT2i in this population is very high
- Despite this, recent data confirm that Black patients are less likely than other race-ethnic groups to be prescribed SGLT2i
- Much work remains to achieve health equity in HF achieving pharmacequity is one mechanism to reduce healthcare disparities

